

11th ERA-NET Bioenergy Joint Call / 1st add. call of BESTF3

BIO-CCHP: Advanced biomass CCHP based on gasification, SOFC and cooling machines

Project introduction

BLAZE Meeting, Rotondella, 10.10.2019

Gernot Pongratz (TU-Graz) Stefan Martini (Bioenergy 2020+)

www.tugraz.at

General overview

Gernot Pongratz

Austria

- Graz University of Technology (TUG), Institute of Thermal Engineering Coordinator; Scientific Partner / University
- Bioenergy 2020+ GmbH (BE2020): Scientific Partner / Research organization
- SynCraft Engineering GmbH (SYC): Company partner / SME
- Hargassner Ges.mbH (HRG): Company partner / SME

Poland

- Institute of Power Engineering (IEN): Scientific partner / Research organization
- Modern Technologies and Filtration Sp. z o.o (MTF): Company partner / SME

Sweden

- RISE Research Institutes of Sweden, Energy and Circular Economy (RISE): Scientific partner / Research organization
- Cortus Energy AB (CRT): Company partner / SME

Development of a novel trigeneration system, BIO-CCHP, for production of electricity, heat and cold from biomass based on:
 (i) Biomass gasification reactor (ii) SOFC (iii) Absorption cooling machine

BESTF³ Bioenergy 810-CCHP

- **High flexibility** in terms of feedstock, plant size, gasification technology, load changes and demand of power (max. efficiency), heat and cold.
- Target electrical efficiency: > 40%
- Preliminary estimation of reduction of normalized operating costs (€/kWh) compared to reference biomass-CHP based on gasification: approx. 30%

loenerg

BLAZE Meeting, Rotondella 10.10.2019

Start: April 2018	Y1		Y2			Y3						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
WP1: Project management												
WP2: Gasification technology												
WP3: Gas cleaning and producer gas characterization												
WP4: SOFC												
WP5: Techno-economic analysis and optimization												

- WP2 Gasification technology: Adaptation and enhancement of gasification technologies to optimize the coupling with a SOFC.
- WP3 Gas cleaning and producer gas characterization: Development of a hot gas purification process for the proposed BIO-CCHP concept
- WP4 SOFC: Optimization of SOFC operation based on long-term tests (> 300h) and supported by CFD simulations
- WP5 Techno-economic analysis and optimization: basis for an optimized integration of the chiller and an optimization of costs and efficiency of the novel CCHP technology

Techno-economic evaluations and industrialization

7

Analysis and optimization of the proposed BIO-CCHP, including a comparison to current state-of-the-art biomass CHP systems.

Evaluation

- feedstock
- gasifier type
- inclusion of a gas turbine
- absorption or compression machine
- storage systems

Discussion

- barriers for market implementation
- industrialization plan.

BESTF³ Bioenergy

WP3: Gas cleaning

Stefan Martini bioenergy2020+

⁹ Gasification technologies

	SynCraft	Hargassner	CORTUS	Institute of Power Engineering	MTF	TU Graz, IWT
Gasification technology	Staged, floating fixed bed	Fixed bed downdraft	Entrainment flow gasifier	Fixed bed, downdraft	Fixed bed, updraft	Fluidized Bed
Gasification agent	Air	Air	Steam	Air, Steam	Air, Steam+O2	Steam
Feedstock specification	Wood chips	Wood chips, pellets	Pulverized pyrolysis char	Wood chips, pellets	Wood chips, chicken feathers	Wood pellets
Nominal power (feedstock)	1 MW	0.1 MW	1 MW	0.15 MW	3.5 MW	1.5 kW
Status of plant	Commercial plant	Commercial series product	Operating in campaigns, test plant	Research facility	Commercial plant	Research facility

¹⁰ Producer gas matrix

permanent gases	sulfur compunds	alkali & halogenes	BTXE & PAH
H ₂ O	H ₂ S	HCI	benzene
H_2	cos	КСІ	toluol
0,	CS ₂	NaCl	xylol_o
CO	SO ₂	КОН	xylol_m
CO ₂	Thiophene	NaOH	xylol_p
CH ₄	Benzo[b]thiophene		styrol
N ₂	Dibenzothiophen		Naphthalin
Ethane	Mercaptans		AceNaphthylen
Ethene	Thioethers		AceNaphthen
Acethylene	Disulfides		Fluoren
Propane			Phenanthren
Propen	nitrogen compounds		Anthracen
i-Butane	NH ₃		Fluoranthen
n-Butane	HCN		Pyren

¹¹ Evaluation of measurement methods

Online methods for permanent gases, inorganic compounds and BTXE

- heated FTIR-analysing system
- Micro-GC-System (CP-Sil 5 CB and a PoraPlot U column)
- Multi component gas analysing device including an infrared photometric detector (NDIR) and a thermal conductivity detector (TCD)

FTIR

GA

Offline methods for

- H₂S, photometric & ICP-OES
- **NH**₃, photometric
- organic sulphur components via GC-MS
- tar-compounds (BTXE, PAHs) via GC-MS

Micro-GC

12

Evaluation of measurement: C2-compounds comparison µ-GC and FTIR

BLAZE Meeting, Rotondella 10.10.2019

¹³ Desulphurisation tests - methodology

Key data desulfurization unit:

- fixed bed adsorption column of stainless steel
- diameter of 40mm
- 150mm active height
- 320 to 380 °C, (tubular furnace, max 900 °C)
- Gas volume flow 0.25 to 0.5 m³/h, usc
- ZnO-based sorbent, spherical shape 3 to 4 mm with an inactive core as support material

+ good properties regarding adsorptioncapacity, resistance against thermal stress and good mechanical properties.

BESTF³ Broenergy BIO-CCHP

WP3: Gas cleaning

¹⁴ Desulphurisation tests - exemplary results

bio<mark>energy</mark>2020+

WP4: SOFC

Gernot Pongratz

Cell performance

Cell degradation

- carbon deposition
- catalyst poisoning

Operating point

- syngas composition
- temperature
- electric load

Syngas cleaning level

- tar compounds
- sulfur compounds
- chlorine compounds

dust

CFD simulation acceleration

Degradation model development & simulations \rightarrow performance as a function of degradation

BESTF³ Bioenergy 810-CCHP

WP4: SOFC

¹⁸ Cells used in the project

Type: Ni/YSZ ASC SOFC

Supplier: IEN

Size: 10x10cm²

- + high H2 reactivity
- + low cost (injection molded)
- low contaminant tolerance

Type: Ni/GDC ESC SOFC

Supplier: IKTS

Size: 10x10cm²

- + high contaminant tolerance
- + better failure behaviour
- less performance

bio<mark>energy</mark>2020+

BLAZE Meeting, Rotondella 10.10.2019

Thank you for your attention!

Technology	Current limitations	Proposed solutions in BIO-CCHP
Gasification	Systems are not optimized for SOFCs. Higher fuel flexibility is needed.	 optimize operating conditions of several gasifiers / feedstocks coupling with a SOFC. switch in an updraft gasifier from air to H₂O / O₂ gasification.
Gas cleaning	High temperature cleaning is not optimized. Emissions of minor impurities in different gasifiers and required cleaning methods are not known.	 Development and optimization of a mobile high temperature gas cleaning unit with experiments at different gasifiers. Development of cleaning methods for minor impurities of producer gas from low cost biomass. Producer gas characterization before / after cleaning, including all SOFC-relevant compounds.

Key issues to be addressed within the project (2) BESTF³ Breenergy BIO-CCHP

Technology	Current limitations	Proposed solutions in BIO-CCHP
SOFC	The optimal operation conditions for different producer gas compositions are unknown, as well as the influence of minor impurities in the long term	 Determination, based on long term tests (>300h) and supported with a CFD dedicated model, of: Optimal (η_{SOFC} > 40%) SOFC process conditions for different producer gas compositions. Degradation effects caused by minor impurities: alkali metals or chlorine compounds (besides sulphur, dust and tars).
Cooling machine	Integration with SOFCs is not resolved.	To model and evaluate the required working conditions for an absorption chiller driven by the high temperature SOFC heat.

